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In this Note we derive the Black Scholes PDE for an option V , given by
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We derive the Black-Scholes PDE in four ways.

1. By a hedging argument. This is the original derivation of Black and
Scholes [1].

2. By a replicating portfolio. This is a generalization of the �rst approach.

3. By the Capital Asset Pricing Model. This is an alternate derivation
proposed by Black and Scholes.

4. As a limiting case in continuous time of the Cox, Ross, Rubinstein [2]
binomial model.

We also derive the PDE for the log-stock price instead of the stock price.
To derive the PDE we assume the existence of three instruments

� A riskless bond B that evolves in accordance with the process dB = rBdt
where r is the risk-free rate.

� An underlying security which evolves in accordance with the Itō process
dS = �Sdt+ �SdW:

� A option V written on the underlying security which, by Itō�s Lemma,
evolves in accordance with the process
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We have written S = S(t); B = B(t); V = V (t) and dW = dW (t) for
notational convenience. We also assume the portfolios are self-�nancing, which
implies that changes in portfolio value are due to changes in the value of the
three instruments, and nothing else. Under this setup, any of the instruments
can be replicated by forming a replicating portfolio of the other two instruments,
using the correct weights.
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1 Derivation of PDE by Hedging Argument

We set up a self-�nancing portfolio � that is comprised of one option and an
amount � of the underlying stock, such that the portfolio is riskless, i.e., that
is insensitive to changes in the price of the security. Hence the value of the
portfolio at time t is �(t) = V (t) + �S(t). The self-�nancing assumption (see
Section 2.1) implies that d� = dV +�dS so we can write

d� = dV +�dS (3)

=

�
@V

@t
+ �S

@V

@S
+
1

2
�2S2

@2V

@S2
+��S

�
dt+

�
�S
@V

@S
+��S

�
dW:

The portfolio must have two features. The �rst feature is that it must be
riskless, which implies that the second term involving the Brownian motion dW
is zero so that � = �@V

dS . Substituting for � in Equation (3) implies that the
portfolio follows the process

d� =
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The second feature is that the portfolio must earn the risk free rate. This
implies that the di¤usion of the riskless portfolio is d� = r�dt. Hence we can
write

d� = r�dt�
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Dropping the dt term from both sides and re-arranging yields the PDE in Equa-
tion (1). The proportion of shares to be held, �, is delta, also called the hedge
ratio. The derivation stipulates that in order to hedge the single option, we
need to hold � shares of the stock. This is the principle behind delta hedging.

1.1 Original Derivation by Black and Scholes

In their paper, Black and Scholes [1] set up a portfolio that is slightly di¤erent:
it is comprised of one share and 1=� shares of the option. Hence, they de�ne
their portfolio to be �(t) = �V (t)+S(t). Similarly to Equation (3) they obtain

d� = �dV + dS (4)
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In order for the portfolio to be riskless, they set � = �
�
@V
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��1
. Substitute

into Equation (4), equate with d� = r�dt = r [�V + S] dt and drop the term
involving �S to obtain�
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Now drop dt from both sides and divide by � to produce
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Re-arranging terms produces the Black-Scholes PDE in Equation (1).

2 Derivation of PDEUsing Pricing by Arbitrage

Pricing by arbitrage means in a complete market, all derivatives can be expressed
in terms of a self-�nancing replicating strategy, and that this replicating strategy
is unique. With this replicating strategy we can set up a replicating portfolio
and use a risk neutral measure to calculate the value of the derivative.

2.1 Self Financing Trading Strategy

Given N assets with values Z1(t); � � � ; ZN (t) at time t, a trading strategy is a N -
dimensional stochastic process a1(t); � � � ; aN (t) that represents the allocations
into the assets at time t. The time-t value of the of the portfolio is �(t) =PN

i=1 ai(t)Zi(t). The trading strategy is self-�nancing if the change in the
value of the portfolio is due only to changes in the value of the assets and not
to in�ows or out�ows of funds. This implies the strategy is self-�nancing if

d�(t) = d

 
NX
i=1

ai(t)Zi(t)

!
=

NX
i=1

ai(t)dZi(t);

in other words, if

�(t) = �(0) +
NX
i=1

Z t

0

ai(u)dZi(u):

In the case of two assets the portfolio value is �(t) = a1(t)Z1(t) + a2(t)Z2(t)
and the strategy (a1; a2) is self-�nancing if d�(t) = a1(t)dZ1(t) + a2(t)dZ2(t).

2.2 Arbitrage Opportunity

An arbitrage opportunity is a self-�nancing trading strategy that produces the
following properties on the portfolio value:

�(t) � 0

Pr [�(T ) > 0] = 1:

This implies that the initial value of the portfolio (at time zero) is zero or
negative, and the value of the portfolio at time T will be greater than zero with
absolute certainty. This means that we start with a portfolio with zero value,
or with debt (negative value). At some future time we have positive wealth,
and since the strategy is self-�nancing, no funds are required to produce this
wealth. This is a "free lunch."
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2.3 Derivatives and Replication

The payo¤ V (T ) at time T of a derivative is a function of a risky asset. To
rule out arbitrage we identify a self-�nancing trading strategy that produces
the same payo¤ as the derivative, so that �(T ) = V (T ). The trading strategy
is then a replicating strategy and the portfolio is a replicating portfolio. If a
replicating strategy exists the derivative is attainable, and if all derivatives are
attainable the economy is complete.
In the absence of arbitrage the trading strategy produces a unique value

for the value V (T ) of the derivative, otherwise an arbitrage opportunity would
exist. Not only that, at every time t the value of the derivative, V (t) must
be equal to the value of the replicating strategy, �(t), so that �(t) = V (t).
Otherwise an arbitrage opportunity exists. Indeed, if V (t) < �(t) you could
buy the derivative, sell the replicating strategy, and lock in an instant pro�t.
At time T both assets would have equal value (�(T ) = V (T )) and the value
of the bought derivative would cover the sold strategy. If V (t) > �(t) you
could sell the derivative, buy the replicating strategy, and end up with the same
outcome at time T . The technique of determining the value of a derivative by
using a replicating portfolio is called pricing by arbitrage.

2.4 Derivation of the PDE by Replication

To replicate the derivative V we form a self-�nancing portfolio with the stock S
and the bond B in the right proportion. Hence we need to use the replicating
strategy (a(t); b(t)) to form the replicating portfolio V (t) = a(t)S(t) + b(t)B(t)
and determine the value of (a(t); b(t)). The self-�nancing assumption means
that

dV = adS + bdB

where a = a(t) and b = b(t). Substituting for dV from Equation (2) and for
dB and dS produces�
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= (a�S + brB)dt+ a�SdW

Equating coe¢ cients for dW implies that a = @V
@S . Substituting in Equation

(5) produces

@V
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+
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= brB

= br

�
V � aS
b

�
= rV � rS @V

@S
:

Re-arranging terms produces the Black Scholes PDE in Equation (1).
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2.4.1 Interpreting the Replicating Portfolio

The time-t Black-Scholes price of a call with time to maturity � = T � t and
strike K when the spot price is S is

V (St;K; T ) = S�(d1)�Ke�r��(d2) (6)

= aS + bB

where

d1 =
log S

K + (r +
�2

2 )�

�
p
�

and d2 = d1 � �
p
� . It is easy to show, by di¤erentiating the right-hand side

of Equation (6), that a = @V
@S = �(d1). Since �(d1) > 0 this implies that the

replicating portfolio is long the stock, and since �(d1) < 1 the dollar amount of
the long position is less than S, the spot price. Furthermore, since

bB = �Ke�r��(d2);

the replicating portfolio is short the bond. Finally, since e�r��(d2) < 1, the
dollar amount of the short position is less than K, the strike price.

2.5 Replicating the Security

In the original Black-Scholes derivation of Section (1) we are in fact replicating
the bond B with the option V and the security S. In the arbitrage derivation
of Section (2.4) we are replicating the option with the security and the bond.
We can also replicate the security with the bond and the option, and obtain the
Black-Scholes PDE. We form the portfolio S = B + �V where � needs to be
determined. Applying the self-�nancing assumption implies that

dS = dB + �dV

so we can write

�Sdt+ �SdW = rBdt+ �

�
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+
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�
dt (7)

+�

�
�S
@V

dS

�
dW:

This implies that � =
�
@V
dS

��1
: We can write Equation (7) as

�Sdt = rBdt+
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�
dt

Drop the dt terms from both sides, substitute B = S � V
�
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��1
to obtain
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so that

�S
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�
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�
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Cancelling terms and rearranging yields the PDE in Equation (1).

3 Derivation Using the CAPM

This derivation is included in the original derivation of the PDE by Black and
Scholes [1].

3.1 The CAPM

The Capital Asset Pricing Model (CAPM) stipulates that the expected return
of a security i in excess of the risk-free rate is

E [ri]� r = �i (E [rM ]� r)

where ri is the return on the asset, r is the risk-free rate, rM is the return on
the market, and

�i =
Cov [ri; rM ]

V ar [rM ]

is the security�s beta.

3.2 The CAPM for the Assets

In the time increment dt the expected stock price return, E [rSdt] is E
h
dSt
St

i
,

where St follows the di¤usion dSt = rStdt + �StdWt. The expected return is
therefore

E

�
dSt
St

�
= rdt+ �S (E [rM ]� r) dt: (8)

Similarly, the expected return on the derivative, E [rV dt] is E
h
dVt
Vt

i
, where Vt

follows the di¤usion in (2), is

E

�
dVt
Vt

�
= rdt+ �V (E [rM ]� r) dt: (9)

3.3 The Black-Scholes PDE from the CAPM

The derivative follows the di¤usion

dVt =
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Divide by Vt on both sides to obtain

dVt
Vt
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which is

rV dt =
1

Vt

�
@V

@t
+
1

2
�2S2t

@2V

@S2

�
dt+
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St
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Drop dt from both sides and take the covariance of rV and rM , noting that only
the second term on the right-hand side of Equation (10) is stochastic

Cov [rV ; rM ] =
@V

@S

St
Vt
Cov [rS ; rM ] :

This implies the following relationship between the beta of the derivative, �V ,
and the beta of the stock, �S

�V =

�
@V

@S

St
Vt

�
�S :

This is Equation (15) of Black and Scholes [1]. Multiply Equation (9) by Vt to
obtain

E [dVt] = rVtdt+ Vt�V (E [rM ]� r) dt (11)

= rVtdt+
@V

@S
St�S (E [rM ]� r) dt:

This is Equation (18) of Black and Scholes [1]. Take expectations of the second
line of Equation (2), and substitute for E [dSt] from Equation (8)

E [dVt] =
@V

@t
dt+

@V

@S
[rStdt+ St�S (E [rM � r]) dt] + 1

2

@2V

@S2
�2S2dt: (12)

Equate Equations (11) and (12), and drop dt from both sides. The term
involving �S cancels and we are left with the PDE in Equation (1)

@V

@t
+ rSt

@V

@S
+
1

2
�2S2t

@2V

@S2
� rVt = 0:

4 Derivation as a Limit of the Binomial Model

The stock price at time t is St. De�ne u = e�
p
dt and d = e��

p
dt. At time

t+ dt the stock price moves up to Sut+dt = uSt with probability

p =
erdt � d
u� d ;

or down to Sdt+dt = dSt with probability 1 � p. Risk-neutral valuation of the
derivative gives rise to the following relationship (see Cox, Ross, and Rubinstein
[2])

V erdt = pVu + (1� p)Vd = p (Vu � Vd) + Vd (13)
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where V = V (St) ; Vu = V
�
Sut+dt

�
and Vd = V

�
Sdt+dt

�
. Now take Taylor series

expansions of Vu; Vd; erdt; u; and d up to order dt: We have

Vu � V +
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Similarly

Vd � V +
@V

@S
St (d� 1) +

1

2

@2V

@S2
S2t (d� 1)

2
+
@V

@t
dt: (15)

The other expansions are

erdt � 1 + rdt;

u � 1 + �
p
dt+
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2
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d � 1� �
p
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2
�2dt:

Note that (u� 1)2 = (d� 1)2 = �2dt. This implies that we can write

p (Vu � Vd) = p (u� d) @V
@S
St (16)

=
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Substitute (15) and (16) in Equation (13) and cancel terms to produce

V (1 + rdt) = rSt
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@S
dt+ V +
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dt+

@V
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dt:

Cancel V from both sides and divide by dt to obtain the Black Scholes PDE in
Equation (1).

5 The PDE in Terms of the Log Stock Price

Recall the Black Scholes PDE in (1)
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� rV = 0:

Consider the transformation x = lnS. Apply the chain rule to the �rst-order
derivative to obtain
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:
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The second order derivative is a little more complicated and also requires the
product rule
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Substitute into the PDE (1) to obtain the PDE in terms of the log stock price
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2

2

�
@V
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� rV = 0:

The transformation creates a PDE with constant coe¢ cients rather than coef-
�cients that depend on S.
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